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The differential method of analog signal one-bit coding — the delta-modulation
(DM} —is largely acknowledged as a meaus of economical digital ‘coding in
data transmission through a communication channel. The advantages and ihe
shortcomings of the method in this respect are widely known [1, 2, 3] Recently
certain reliability consolidation of the delta-modulation as a method of informa-
tional coding has been noted [4] and first atiempts at DM digital processing
have been made [5,6,7, 8] but they were more of an incidental rather than
systematic nature.

On the other hand, because of the lower rate of the DM binary digital
stream compared fo the normal or logarithmic PCM at adequately satisfiable
quality of coding (referring to the signal-to-noise ratioc SNR} and of the consi-
derably simplified instrumental design compared to other coding methods {for
instance DPCM), we may consider the DM method as particularly favourable
for videoinformational digital processing.

The purpose of this paper is to present a systematic overview of the DM
possibilities in digital processing in general and to consider some specific pro-
cessing properties of this coding type. As far as the authors are informed, this
may be a first approach of that kind.

1. Ditferential Calculations and Delta-Modulation

The differential algorithms with finite number and step size represent a signi-
ticant portion of the contemporary digital methods applied with finite state
machines (both in step and operational number).

While the ditferential calculus provides the principles, it can be shown
that the . DM is a natural basis for applying these principles in a general sense.
For instance, we can find analogy between the differential algorithms of a
uniform set and the synchronous DM or belween the differential calculus of
nonuniform interpolation sets and some specific types of asynchronous DM. The
linear synchronous 1XM represents the input signal only by constant finite
ditferences [1] although there are varieties (adaptive and/or asynchronous)
[S, 10], where these differences are distinguished between themselves. The
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inear DM does not represent the input signal itself through the tinite diffe-
rences of the I1st order but rather its linear interpolation (with splines of the
Ist order, therefore the macrointerpolation, as far as they interpolaie among
themselves in certain cases, is of “zero” order), and the accuracy is provided
on account of the increased clock frequency (i: e. increased number of interpo-
lation blocks),

Let us consider & function of a variable determined over a discrete set
of equidistant points, i. e.

(li) {f:’flfk’:f(x(]':"kk)! k-TCOHSt}kem,
(1.2) X={xp X,— Xg-kA, F=constlrecm
(1.3) M={m |m|e No}), Np--10,1,2,...,

where M is the index sei of the interpolation set.The differential operator can
be determined [11] as

(1.4) Aflery=fx:- b )= f{xd) = frrs — 1o

The differential operator contribution to the various arithmetic processes is of
particular importance to the further examination of the relationship between
the signal digital processing and the delta-modulation processing system. This
opetrator is linear [1]. Ifs effect on products of lwo functions, for instance, can
be represented by

(1.5) Y=y

Ay = Ao )= et dy = @ b+ g iy,

The operator for the n-th derivalive can be represented as (1.8) [12, 13]
based on the differentlal Table ior uniform interpolation set and sufiiciently
differentiable function

28 i n i 1 1 n
(I.6) (;;E— .r? hl(l ‘I‘/Iy)l 2 .'-;?:H (/jy- '—é' /Jay‘i__s_ Aay =4 ) ')
x,‘EX.
Then for the first derivative it yields
Sl
(1.7) Yy 4V,

as approximation for functions wilh 'finite spectrum at suificiently populated
interpolation set or

(1.8) HM> A,

where HAM is the cardinal number of the index set and A depends on the
spectrum type, i, e. condition {1.8) is equivalent to sufficiently large clock-
frequency in the DM processing system

(1.9) ol o

where f; is the clock-frequency of the DM system.

There are other types of numerical differentiation [12], appropriate to the
given case. |

At functions of fwo arguments z=f{x, y), which represent the natural
generalization of different picture types, we can deline by analogy (1.4) a linear
differential operator [12, 14]. Referring to the latter, the interesting processing
cases, e, g. (1.5), (1.7), can be generalized as well. ' ]
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The prediction process in delta-modulation models another approximative
curve with spline functions of the respective order, following the main process
in the discretization points

(1.10) o, | = sign (G —yi), ze{=1, 1}
‘ "\ yie= g1+, b, ke=const,

is valid for the linear DM, where 6% is the delta-transformation of the analog
signal, x (¢} by the DM coder with A-step and duty cycle interval :=fi; v, 18

the approximated signal respective value ¢,=c¢(¢) and z, is ihe delta-modulalos
output jump, hormalized to the step, prior to encoding into a binary code. The
approximating process y; can be represented as resulting from the two corres-
ponding sequences of the differeniial table for y, and the specitic feaiure of
the Table is the fixed value of the first difference,

The differences available in the differential tables for the input signal and
the approximation would result mainly from the distortions within the coding
process, i. e, from the quantizing noise and from the slope overload noise. [f we
average within a given tinite interval T=nz by the dependence

e dss

(I Al ) '/fym - ym-l—l "‘ym =k ‘2:‘ 2y
f={m— 141

i. e. if we build up the first two columns of the differential table over the
depopulated interpolation set x7-- x7, where the dependence

¥
(1.12) H xp=

is valid, then between the cardinal numbers of the index sets there is a cer-
tain approximation of the two tables in the case of optimal signal quantization
¢ () {with respect to the signal-to-noise ratioc — SNR). Otherwise, ihe approxi-
mation differentiational table would appear in a rather tough fornm, compared
to the input signal table.

By analogy, in other DM types there is an interrelation belween the out-
put sequence of the DM coder variations

(1.13) 20:.={2Vien
and the differential table of the input signal, respectively.

2. Delta-Mcdulation Operations

If we satisfy the familiar requirements [15] for an optimal DM coder, we may
consider x¢ for an accurate digital representation of x? by amplifude.

The delia-transtormation of the input signal ¢ (f) can be represenied as a
binary sequefice

2.1 d:={Bhien, BE{0, 1},

where NV is the index set.
Ii f(f), u{t) and v{f) are the actual input signals, represenied by time
functions with g finite spectrum, and their DM {ranstormations are 8(f), é{w)
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and é(w) and the operation F4=0U+ VY is effected, the processing could be
subdivided inio three classes depending on the result type,

a) the output gives the finite diiferences, AFG—FG —F7 in digital form
coded into 1he respective binary code.

In that case the process can be represented as an output of a ditferential
coder with a pulse-code modulation (DPCM) which ‘encodes the respective
resulting signal, composed by the DM approximations of signals and u(f)
and v(?) :

{2.2) ZIF?; g (Siz, dw, #);

b) the output is represented in DM type Bl=v (BY, BY+), where B/, BY, B?
are respeciively the i-th binary symbols from the corresponding seguences, i, e.

(2.3) of - -p (Bu, 8w, #);

c) the result is represented as a DM approximation F7 before or affer

LF-filtering, decoded respectively, i e. both result processing and decoding
are effected

(2.4) F9 -y (du, dv,+).

Both cases (a) and (b} permil uniquely the direct digital representation of
the signal in the respective system code (by accumulation of /¥ from {(2.2)

and {2.3)). Case{c) is valid when the transformation y is invariant WIth respect
to the binary sequences du, dv or to their resultant and the operation = is
mostly realized by variations of ithe DM decoder parameters,

3. Spatial Invariant Transformations of Pictures

The picture [=B(x, v} can always be represented through a screen scan-
ning system as a function of one argument B{f)= Blx{f), y(f)] through the
evolved functions f.(f), fy (£} [16, 17, 18], where

3.1) Ur=U[B{B)]- U{B[x(2), ¥}

is the output signal of the screen system.

Let transformation ¢%(U) be effected by the DM decoder (1.10). It will
transform the continuous signal of the evolving system u(¢) into the binary
sequence du

(3.2) 88w (8) — duld).

Theretore, the picture [ is transtormed into the sequence du, through the com-
position of the screen system and the DM coder (Fig. 1). When decoding the
du by appropriate decoder (6¥)~! the signal U7(f) could be obtained which

corresponds to the picture /. Thus the spatial invariant operations concerning
contrast variations, inversion, peculiarity outlining, and quantization [20] can
be readily effecied.

We call spatial invariant operations those which accept transtation i e.
when the operational composition over the picture ¢ and the translation 7,,
are commutative [19].

If the operation ¢ is such that ¢[f(x, y)] depends uniquely on f{x, ), i e.
there exists an x(f) such that

(33) @ {fx =2l =z (/) vf¢o vl es
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is valid, where ¢ is the picture set within which the operation ¢ is realized in
the definition region of §, then @ would be the by-element operation for the
picture /, If x is linear and of the {ype

(34) x:x(f.-'):“p'fx"

iy
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Fig. 1. Plcture 1 is trausform- Fig. 2. Spatial invarfant transforma-
ed into the sequence du tion of picture by the composition(3.5)

t could be easily effected by the composition beiween ihe direct and reverse
DM transformations.

(3.5) 5? o (5’:1)—1
accordgge to the scheme
3 {6?‘2;1 =

T

Ix ¢
(3.6) == U(f)—> 6,—— U(H—> 1.
The new signal {/'(#) amplitude will attain the value

: 2
(3.7 i Ay=4, };;‘:AOF-

Obviously picture / is transformed into /' (3.6), where @:/— I' and @[ f(x, ¥
=x(fi{x, y)=Af; as far as the picture / geometry is not deformed, o is the
spatial invariant and actually

wfco, ik €S, Tap ol = Taslbfi)=kf; (x—a, y —0)=k(Tan(f1)
(3.8) =@|Tas (= Tapop—@o Top

Figure 2 shows the cases p>1, p< 1. Under operation we understand precise-

ly the composition (3.5), i. e. the realization of the linear by-element opera-

;] e ) tions of the type y by DM is adequate to the signal coding

e 1 of the evolving system [/(#) by the point 8¢ in the plane

) i of the linear DM transformations and its reconstruction at
U)" *—U®)  poini 6* from the same plane {20}

This type of processing is of the class (2.4} because the output DM se-
quence oz is invariant with respect fo the operation. By analogy, there could
be realized operations of contrasting over determined levels, outlining of spe-
cifics and others [20] by appropriale restrictions over ¢ of the by-element
operations,
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Fig. 3. Block-dfagram of that particular element which
applies the spatial invarfant by element operations
of the above-mentioned types

Figure 3 shows the block-scheme of that particular instrument which
applies the spatial invariant by element operations of the above-meniioned
types.

4. Scale Transformations®

A single representation of the signal L(f) (3.2) is realized by the transforma-

tion &% (3.2), which is invariant with respect {o the scales of the two coordi-
nates of the signaland to the coordinates of the picture itself, respectively, since
it is adequately represented by the screen system. In contrast o (3.5), here
the composition will be

8)) & ooty

because the scale transformations over picture /7 are attached to it by [Xf) of
the screen system. It is clear that all similar (purely scalar) operations will be
represented in the plane of the DM transformations [21] by segments parallel
to the abscissal axis Or. The dependence beiween the coded and decoded
signal in that case will be

(4.2) U’(f}:U(t _E-) ,

I. e in fact we have “exiension” (“compression”) of U(f) up to U'(¢) or the
linear picture scale variation takes place because of deformation in the tempo-
! 27 ral axis in the screen system by ¢, obviously the signal tem-
1 i poral deformations U(¢) evolve frequency deformations, accord-
) ing to the compression theorem of the Fourier transiormation
UY“—U'#)  and the signal S(w) spectrum becomes
I o i lzg 121
(4.3) Sw)-=2 S(; o)

T

i - % " T
- ¢ the signal spectrum components {w}en will transform into {w, r_g}fEN,

and the period of the transformed signal U’(i):U’(t-{- 277) will be T'=kT,

*By scale transformations over / we understand here the fransformations of the linear
scale towards the rapid scanning of the screen system, for instance for the sweep e
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Fig. 4. Scale transformation

The new signal U/7{{) will be received at the DM decoder with the same SNR
as in possible reconstruction of U{¢} in the same coding point of the 6':1 signal,

i e. both direct and reverse DM tiransiormations are equally optimal with
respect fo the SNR. Indeed, the familiar formula [1] for the SNRumay yields
o f

(4.4} SNR:naX: W !
where fo=1/z is the DM clock frequency, f, is the boundary frequency of the
lowpass filter LPF permeability into the DM coder, and f; is the frequency of
the processed harmonic signal, i e, SNR is invariant with respect to the fre-
quency region deformation equal for both the decoder and the signal.

Figure 4 shows the two possible cases of temporal scale changes of U(f)

at g=—>1 “extension” and g1 “compression”. Because of the screen system
the pictiire would change geometrically along the same axis proportional to ¢ or

(4.5) 8.0 8., 170 9 =Flgx, y)=o(f)

Operations of ifype (4.5) are intercommutant al certain conditions {21},
which significantly facilitates repetitive processing. ’

o. Application of Some Arithmetic Operations

5.1, Addition
The operation can be represented as
5.1} Fi==Uf4- V1.

By analogy with the differential operator effect in the arithmetic operaiions
point 1, [11] the addition in this case could be represented by 2zdu and zdéw

(5.2 AF;—z44-22.
it can be proved that .
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is valid [22] and the process is of the (2.2) type. When representing the
DPCM outpul 4F by symbol, we can trace the correspondence

10, B;ca=(B,' BIABY- 1)
(5.4) |4F,)={ 0L, B¢ p—1B, B: + B}
00, B,y -{B;| BV BY)

Expression (3.8) yields the dependence at synchronous binary sequences du and
dv obtained by a linear DM with equal parameters. The reestablishing of the
actual values could be effected through integration, i e.

i—1 i—1

(5.5) Fi= D AF;> 2zt am),

i=0 j=0
The logical scheme through which (5.2) is transformed into (5.4) is shown in
Fig. 5 as the integration over (5.5) can be etfected by reversive counter shown
with dashed line (the amplitudinal tecovery in the differeniial methods is re-
duced always to integration and therefore this counter is typical for any simi-
lar cperation). -

In general the addition of n-variables could be effected also by the corres-
ponding DM fransformations [22] and into the three possible types — (2.2),
(2.3) and (2.4}, respectively.

It can be shown lhat the subtraction reduces to logic inversion composi-
tion of one sequence and addition [22] (Fig. 6).

8.2. Mulliplication

Let us assume necessary to perform operation
(6.6} Fi=U:V.

If the differential operator affects this expression
and the finite difference (1.5) is formed when replacing
the corresponding differences with the DM jumps 2"

and 27, we can obtain

i—1 i—1
(5.7) AF- 20 Qa2 Dlatt 2t ey

U =l
at the input sigpal. Expression (5.7) yields the digital
jump when a product of ihe respective DM transformations
da and dov is lormed with equal parameters + aud 4.
In integrating the differences we can obfain the product
Fig. 5. Addition of itself.
2-variables The adding procedure does not express clearly the

advantages of any of fhe lhree representatiors of the

outpul signal {2.2), {2.3) and (2.4). The multiplication
procedure will yield a very complicated solving rule (6.7) at ouipul of the
(2.3) type [22}, and the algorithmic noise of the operation will be signi-
ficant, This noise can be distributed a§ additional info boih categories of DM
noise—from quantization AN, and from slepe overload N, The output realization
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{2.4) is impossible because of changes in the invariance condition (point 2.c}.A
block-scheme of the {2.2) type is shown in Fig. 7.

The reversive counters RC {/ and RC V integrate the corresponding binary
sequences sz and Sz, The muitipliers with values M1 in fact determine only the
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Fig. 7. Block-diagram of the multiplica-
tion, {2.2} type

sign of the resuit yielded by the counters when adding that to the accumulating
adder. When the annulation of the accumulaling adder is effected at each duty
cycle, AF; will be obtained at ils output in the opposite case /5 could be
accumulated in ihe same adder. The multiplier of value 1X1 determines the
sign of the adder unit in the LSB order of the adder. rigure & shows the
result approximations of the respective signals of the binary sequences and

digital values of AF;.

This technique could result in a great number of operations which are
interesting for the videoprocessing of the specirozonal scan videoinformation
for the needs of the remote sensing. For instance, in a similar way we can
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presént the Riemann and Stilte's integrals {23] and some integral transforma-
tions as well. The contouring of some specific featurescould he effecied also
by this technique, once by the respective DM anaiogies o {1.7) {24] in diffe-
rent directions {25, 28, 27] and also when realizing some gradient operators
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3

Fig. 8. The result approximations of the respective
signals of the binary sequences

by DM, for instance [26, 29, 27]. Simultaneously we can measure some para-
melers of the subjects, such as surface {30} Lo )] _

Particularly interesting for these aims is the determination of uniform
subjects (with respect to the spectrum) from the multispectral scan videoinfor-
mation. One of the principal requirements for such a procedure is the real time
mode of the reproductive system. The DM processing system separates the
uniform videoinformafional files by recording the alternative series of the out-
put binary sequence &z [27] for each speciral channel.
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By the logical intersection between the unions of the wditferent subject
chords in each channel - Lt

(5.8 AN U0 N U )=y
! J 2

we obtain the homogeneous subjeci v, represented in the screen system by the
respective restrictions of the videosignals in each channel g%, By such separa-

tion of homogentities it is possible to effect’ various types of regularization
to a" different extent. - L WY '

6. Possibilities of Instrumental P'fc_}grarﬁnﬁng in Different . Modes

When designing 2 TV-instrument for videoinformational processing which
employs a single DM processing system, it is of particular importance to mi-
nimize the instrumental part. _ :

The introduction of instrumental programming is of specific advantage
because it provides for the use of a universal module in effecting a large
number and fypes of operations,” :

A v
by >v [ S-S

EATER U ammel e
TR TV
P M

Fig. 9. The processing is effected by the micro.

processor
Progran
[/;//2!.
c L
oo
22
W p— TR
G /EHE j
L i s 7 |

Fig. 10. The microprocessor is used as a controller

" With the introduction of large integral schemes into practice, considerable
possibilities to universalize the instrumiental part appeared [33], e. g. the new
generations ef:microprocessors are particnlarly applicable to the binary sequen-
ces, especially in analog signal processing [31]. Of course, videoprocessing sets
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its specific requirements on the design of such instruments and we can divide
them into two groups:

a) instruments where most of the processing is effected by the micropre-
cessor sequences {Fig. 9);

{ b) i;istruments where the microprocessor is used only as a coniroller
Fig. 10}

The instruments in Fig. 9 can be successiully applied in cages when the
digital streams under processing do not exceed significantly their permeability,
i. e. these could be fast and high-speed bipolar microprocessors.

Inversely, the version in Fig, 10 does not require fast operation of the
processor, because it commutates the instrumental part when realizing the va-
_tious operations. The realizaticn ifself should be fast.
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Liugpporast 0GpaboTKa BHACOUH(OPMALMH TIPK [OMOLLU
METOZa AEAbTA-MOLYASLHH

J1 H. Muues, 1. B. [empos

(Pedwme)

B palore caenara MOULITKA CHCTEMATHSHPOBAThH 0030p BOBMOXKHOCTEH METOAA
NeAPTA-MOAYMALME I OCYIIECTBJEHHS HEKQTOpEIX oOmepauui mpu oGpaGoTKe
sufeorsPopmanny. [10Ka3aubl CBA3L PASHOCTHOrO HCUMCHEHUS H JAEALTA-MONYJS-
MH, A TAK#Ee BOSMOXKHOCTH STOTO METOJa ANS DeanH3alHH MPOCTPAHCTBEHHO-
YHBADHAHTHEIX H MacwTabHHx TpaHchOpMaLMH  HEKOTOPHIX ApH{METHIECKHX
onepaki.

Crenana kiaaccuduianus o8pafaTHBAIONIHX CHCTEM C JAEADTA-MOAyadnued
K@K 10 OTHOLWIEHMIO K IPHHIMIAM DaGOTH, T2X K N0 OTHOIEHHMIO K OpraHuaa-
neH annaparsEol YacTH. ; Gaprgen
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